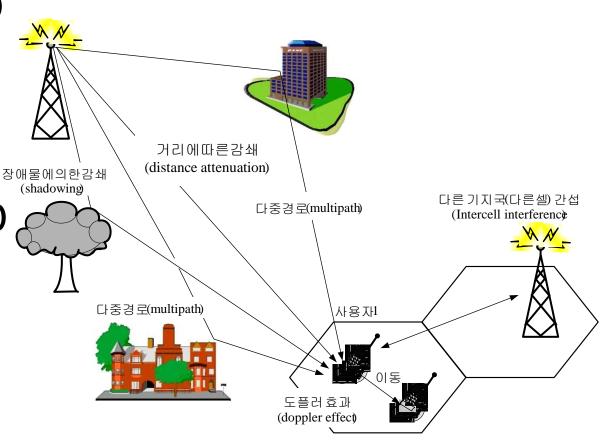
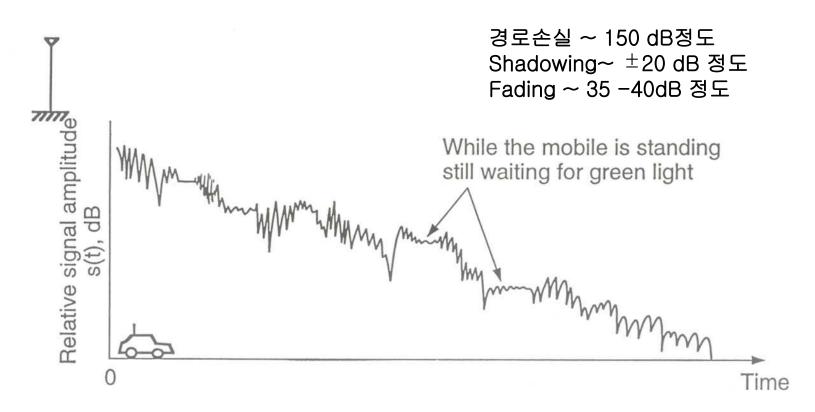

# CHAPTER 3 이동통신의 채널환경


- 이동통신 채널특성
- 전파 손실 모델
- Small scale fading 해석(다중경로, 도플러)
- 정보전송속도와 fading의 상관관계

- □ 자연 지형 환경(natural terrain configuration)
  - ◈ 개방 지역(open area)
  - ◈ 평지(flat terrain)
  - ◈ 언덕 지형(hilly terrain)
  - ◈ 산악 지역(mountain area)
- □ 인공 구조물(human made environment)
  - ◈ 교외지역(rural area)
  - ◈ 준근교지역(quasi-suburban)
  - ◈ 도시근교(suburban)
  - ◆ 도심지(urban)
- □ 이동 환경(moving medium)
- □ 분산 환경(dispersive medium)




✓ 직접 경로(direct path), 반사 경로(reflected path), 분산 경로(scattered path), 회절경로(diffracted path)로 구성 된 신호 응답

- ▽ 경로손실(path loss)
- ▽ 섀도잉(shadowing)
- ▽ 페이딩(fading)
  - Multi-path,
  - Doppler effect
- ▽ 간섭(interference)



✓ 이동통신의 채널환경 모델 도식

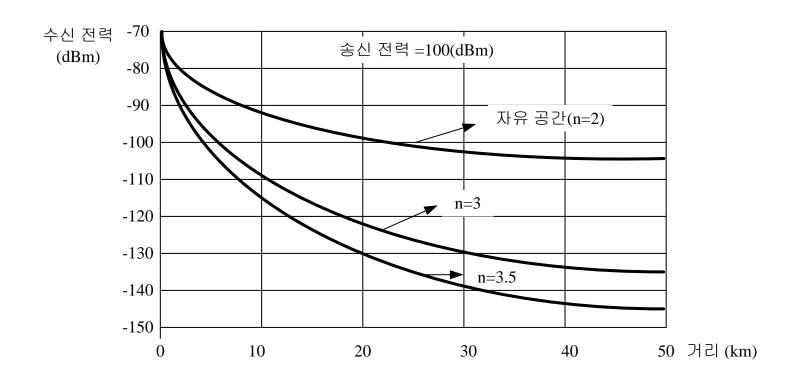
Recorded Signal Strength in Real Time



### 3.2 Large Scale Propagation

- ☐ Large-Scale propagation model
  - ♦ Why Large?
    일정 거리에서 평균 신호 세기는 송신기로부터의 통화권을 추정하는데 사용되며, 수백 미터 혹은 수천 미터 거리에서 신호 세기 상태를 알아보는 것
  - ◈ 송·수신단의 거리에 따른 감쇠(path loss)
  - ◈ 통신 채널의 지형 지물에 따른 감쇠(shadowing)
    - ❖ 평균 수신 전력은 5λ에서 40λ 범위에서 측정한 신호의 평균 값
    - ❖ 캐리어 주파수가 1~2GHz인 경우 1m~10m 정도의 거리
    - ❖ 신호의 변화는 천천히 일어나며, 신호의 변화 분포는 주로 Log-normal 분포

#### □ Log-distance 경로 손실 모델


- ◈ 평균 수신 전력은 거리에 따라 로그함수의 값으로 감소
- ◈ 평균 경로 손실은 경로 손실 계수를 이용 거리의 함수로 표현

$$\overline{PL}(d) \propto \left(\frac{d}{d_0}\right)^n \qquad \overline{PL}(d)(dB) = \overline{PL}(d_0) + 10n\log\left(\frac{d}{d_0}\right) \qquad PL(d): 거리 d의 경험 d_0: 기준거리(d_0 < d) d_0: 기준거리(d_0 < d) d_0: 기준거리(d_0 < d) d_0: 건파경로 손실 계속$$

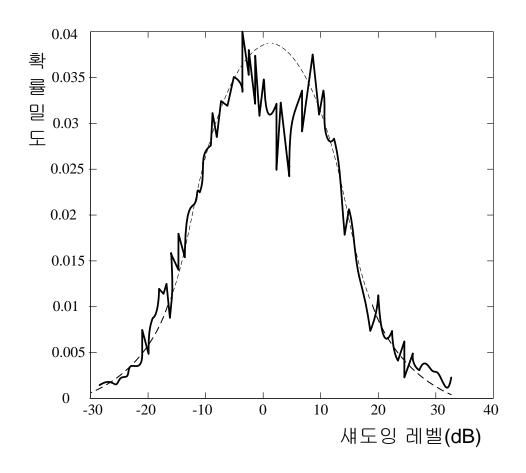
PL(d):거리 d의 경로손실 n:전파경로 손실 계수

| 통신 채널 환경                      | 경로 손실 계수, n |
|-------------------------------|-------------|
| Free space                    | 2           |
| Urban area cellular radio     | 2.7 ~ 3.5   |
| Shadowed urban cellular radio | 3 ~ 5       |
| In building line-of-sight     | 1.6 ~ 1.8   |
| Obstructed in building        | 4 ~ 6       |
| Obstructed in factories       | 2 ~ 3       |

#### ◈ 경로손실 계수 n에 대한 수신된 전력



#### ☐ Log-normal shadowing 모델


- ◆ 송·수신기 사이의 실제 주변 환경에 따라 경로 손실 변화
- ◈ 실제 환경에서 나무나 빌딩 등에 의해 전파가 감쇠
- ◆ 거리 d만큼 떨어진 지점에서 경로 감쇠 값은 거리에 따른 경로 감쇠값에 대해 log normal 분포 모델

$$PL(d)[dB] = \overline{PL}(d) + X_{\sigma} = \overline{PL}(d_0) + 10n \log\left(\frac{d}{d_0}\right) + X_{\sigma}$$

$$P_r(d)[dBm] = P_r[dBm] - PL(d)[dB]$$
  $(PL(d): 안테나 이득 포함)$ 

 $\checkmark X_{\sigma}$  : 평균이 0인 가우시안 랜덤 변수이며 분산은  $\sigma^2$  이다

#### ◈ 섀도잉에 의한 log-normal 분포 신호



#### ☐ Free Space Model

$$L_{p} = \frac{\lambda^{2}}{(4\pi d)^{2}}$$

where,  $\lambda$ : wavelength of the signal

d: distance between transmitter and receiver 따라서 Path Loss in dB,

$$L_p [dB] = -32.4 - 20 log(f) - 20 log(d) [dB]$$

d: distance in kilometers, f: frequency in MHz It is mostly used in satellite and deep-space communications systems where the signals truly travel through "free space"

☐ Lee model

$$L_p=1.14*10^{-1.3} \frac{h^2}{d^{3.84}}$$

where d: distance in kilometers, h: height of the base station antenna in meters or

$$L_p$$
 (dB) = -129.45 - 38.4 log(d) + 20 log(h)

- It is used in terrestrial communication system and includes various path condition (direct, indirect path)
  - It is strongly influenced by the distance than free space model

#### □ 오쿠무라(Okumura) 모델

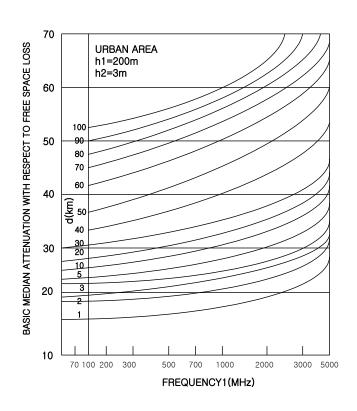
- ◆ 1968년 오쿠무라, 카와노, 후쿠다에 의해 제안
- ◆ 1920 MHz의 주파수에 대해 동경 지역의 전계 강도 측정
- ◈ 육상 이동 통신 무선 방식의 설계 기준으로 이용
- ◆ 준평활 지역 : 시가지, 교외지, 개방지
- ◈ 불규칙 지역 : 구릉 지형, 고립 산악, 경사 지형, 혼합 전파
- ◆ 오쿠무라 모델은 준평활지의 시가지 전계 강도를 기준으로 삼고그 외 지형물에 대해서는 기준 중앙값으로부터 보정값으로 표현
- ◈ 오쿠무라 곡선 : 송신 안테나의 높이, 사용 주파수 이용

#### □ 오쿠무라(Okumura) 모델

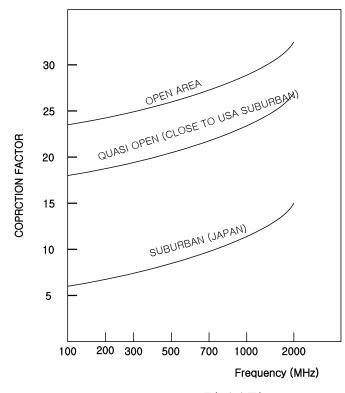
$$L_{50}(dB) = L_F + A_{mu}(f,d) - G(h_{te}) - G(h_{re}) - G_{AREA}$$

 $L_F$ : Free space propagation Loss

 $A_{mu}$ : Median attenuation relative to free space


 $G(h_{te})$ : Base station antenna height gain factor

 $G(h_{re})$ : Mobile station antenna height gain factor


 $G_{AREA}$ : The type of environment

Where 
$$G(h_{te}) = 20\log\left(\frac{h_{te}}{200}\right)$$
  $1000m > h_{te} > 10m$   
 $G(h_{re}) = 10\log\left(\frac{h_{re}}{3}\right)$   $h_{re} \le 3m$   
 $G(h_{re}) = 20\log\left(\frac{h_{re}}{3}\right)$   $10m > h_{re} > 3m$ 

#### ◈ 오쿠무라(Okumura) 모델의 도심지역과 도심 이외 지역



Median attenuation relative to free space



Garea 값 보정

□Ex) Okumura's Model

$$d = 50Km$$
,  $h_{te} = 100m$ ,  $h_{re} = 10m$  in suburban   
EIRP = 1KW at 900MHz. (Unity gain receiving antenna)

Sol)
$$L_{F} = 10\log\left[\frac{\lambda^{2}}{(4\pi)^{2}d^{2}}\right] = 10\log\left[\frac{(3\times10^{8}/900\times10^{6})^{2}}{(4\pi)^{2}\times(50\times10^{3})^{2}}\right] = 125.5dB$$

$$A_{mu}(dB)(900MHz, 50Km) = 43dB$$
&  $G_{AREA} = 9dB$ 

$$G(h_{te}) = 20\log\left(\frac{h_{te}}{200}\right) = 20\log\left(\frac{100}{200}\right) = -6dB$$

$$G(h_{re}) = 20\log\left(\frac{h_{re}}{3}\right) = 20\log\left(\frac{10}{3}\right) = 10.46dB$$

Okumura model sol. cont.)

The total mean Path Loss

$$L_{50}(dB) = L_F + A_{mu}(f,d) - G(h_{te}) - G(h_{re}) - G_{AREA}$$
$$= 125.5dB + 43dB - (-6dB) - 10.46dB - 9dB$$
$$= 155.04dB$$

The median received power is

$$\overline{P_r(d)} = EIRP(dBm) - L_{50}(dB) + G_r(dB)$$

$$= 60dBm - 155.04dB + 0dB$$

$$= -95.04dBm$$

#### □ 하타(Hata) 모델

◈ 오쿠무라 모델의 단점을 수학적으로 모델링하여 간편화

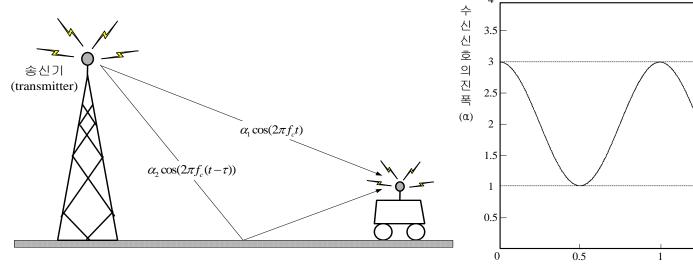
$$L_p[dB] = 69.55 + 26.16\log f_c - 13.82\log h_t - a(h_r) + (44.9 - 6.55\log h_t)\log d$$

 $f_c$ :전송 주파수 d:전파 도달 거리  $L_p$ :전송 손실  $h_c$ :기지국 안테나 높이  $h_c$ :이동국 안테나 높이

#### ◈ 보정 팩터

- **☆ 중소도시**  $a(h_r) = (1.11\log f_c 0.7)h_r (1.56\log f_c 0.8)$
- **소대도시**  $a(h_r) = \begin{bmatrix} 8.29(\log 1.5h_r)^2 1.1; f_C \le 200MHz \\ 3.2(\log 11.75h_r)^2 4.97; f_C \ge 200MHz \end{bmatrix}$
- \*교외지역  $L_p[dB] = L_p(도심지역) 2[\log(\frac{f_c}{28})]^2 5.4$
- \*개방지역  $L_p[dB] = L_p(도심지역) 4.78(\log f_c)^2 18.33\log f_c 40.94$

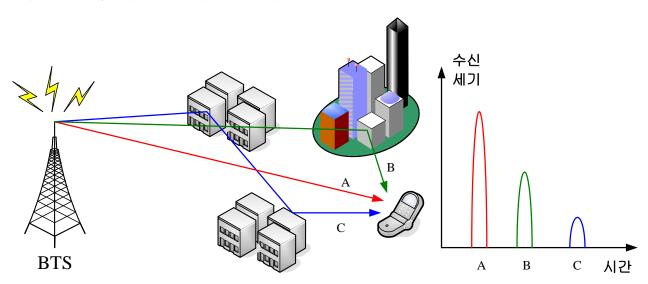
# 3.3 Small Scale Propagation


- Small-Scale propagation model
  - ♦ Why Small?아주 짧은 시간(수초 단위) 혹은 짧은 거리(수 파장)에서 수신 신호의 빠른 변화를 나타내는 전파모델
  - ◈ 다중 경로로 수신되는 신호의 Multipath에 의한 영향
  - ◈ 이동국의 차량 속도에 의한 주파수 천이에 의한 감쇠
    - ❖ 다른 방향에서 오는 신호의 합을 나타내기 때문에 짧은 거리 약 \(\lambda/2\)에서 최대 30~40dB의 수신 전력의 변화가 생기기도 한다.
  - ◆ 송신신호와 다중경로채널의 상대적인 대역폭관계
  - ◈ 레일리 페이딩분포(Rayleigh fading distribution) ▶
  - ◈ 라이시안 페이딩 분포(Rician fading distribution) ▶

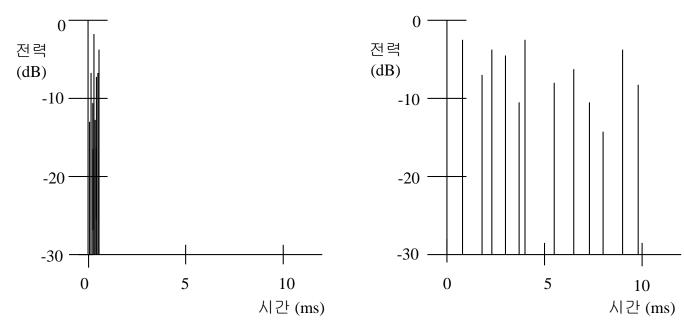
# 3.3 Small Scale Propagation

#### ◆ 2개의 전파 경로를 가진 채널의 예

$$r(t) = \alpha_1 \cos(2\pi f_c t) + \alpha_2 \cos(2\pi f_c (t - \tau))$$


 $\alpha_1, \alpha_2$  : 각각 두 경로로부터의 신호 진폭




- $\checkmark$   $\alpha_1=2$ ,  $\alpha_2=1$  인 경우  $f_c\cdot \tau$  에 대해 페이딩에 의한 진폭의 변화
- $\checkmark$  두 신호의 합에 의한 신호가  $f_c \cdot \tau = 0,1,2,$  일 경우 좋아지기도 하고,  $f_c \cdot \tau = 0.5, 1.5, 2.5$  경우 나빠지기도 한다.

 $\alpha_1 + \alpha_2$ 

- □ 송신된 전파가 다중 경로 전파환경에 의해 산란 및 반사되어 수신 시간이 퍼지는 현상
  - ◆ 다중경로는 송신신호가 직접 도달할 뿐만 아니라, 장애물을 통과하거나 반사하여 간접적으로 도달할 때 발생
  - ◆ 직접 경로와 반사 경로 사이에 경로차가 발생하여 수신기 에 도착하는 시간 차이 발생



- ◆ 다중 경로로 전파된 신호는 각 경로의 거리 및 전송 특성 등의 차이에 의해 도달하는 시간과 진폭에 차이가 발생
- ◈ 일반적으로 거쳐오는 경로가 길수록 수신되는 진폭은 작아 지고 지연시간도 길어지게 된다.

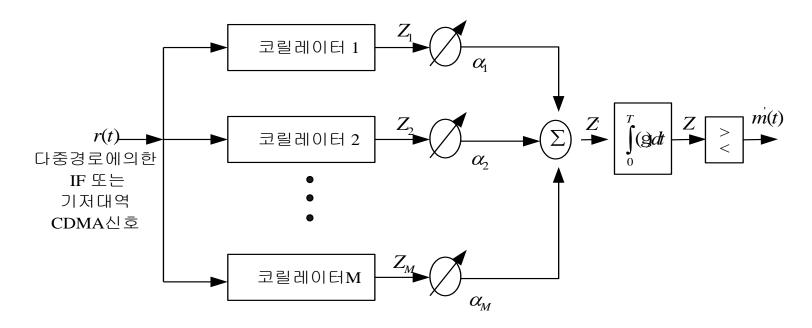


✓시골 지역과 도심지역 지연 확산 비교

# 다중경로에 의한 지연 확산

| Type of Environment | Delay Spread $~	au_d(\mu s)$ |
|---------------------|------------------------------|
| Open area           | < 0.2                        |
| Suburban area       | 0.5                          |
| Urban area          | 3                            |
| In-building         | 0.1                          |

\* 다중경로 환경에 따른 Rake Receiver 분해도 ->교재 193-194쪽 참조


정의: 송신된 전파가 이동 수신기에 도달되는 시간이 다중경로 전파 환경에 의해서 시간적으로 퍼져 들어오는 정도

=> Intersymbol Interference

특성 : 떨어져 있는 반사체가 많은 환경 내에 이동체가 놓여 있을 때 Delay Spread 값이 커진다.

또한 delay spread 값은 Higher data rate 시스템에 심각한 영향을 끼침

- ◈ 인접 심볼 간의 간섭(ISI; inter symbol interference)
  - ❖ 원래의 심볼 주기보다 빠르게 혹은 늦게 도착한 심볼은 앞이나 뒤의 심볼에 영향
  - ❖ 고속 데이터전송시스템은 지연확산으로 인한 ISI 영향 증가
  - ❖ 레이크 수신기(Rake receiver) 이용(교재 193-194쪽 참조)



#### □ 전력지연 프로파일 특성

- ◈ 최대 시간 지연 확산(maximum excess delay spread)
- ◈ 평균 초과 지연(mean excess delay)

$$\bar{\tau} = \frac{\sum_{k} a_k^2 \tau_k}{\sum_{k} a_k^2} = \frac{\sum_{k} P(\tau_k) \tau_k}{\sum_{k} P(\tau_k)}$$

◈ rms 지연 확산(delay spread)

$$\sigma_{\tau} = \sqrt{\overline{\tau^2} - (\overline{\tau})^2}$$

◈ 평균 제곱 지연(mean square delay)

$$\overline{\tau^2} = \frac{\sum_k a_k^2 \tau_k^2}{\sum_k a_k^2} = \frac{\sum_k P(\tau_k) \tau_k^2}{\sum_k P(\tau_k)}$$

◈ 최대 초과 지연(maximum excess delay)의 상관 관계

$$B_c = 1/T_m$$

◈ 주파수 상관성이 0.9 이상, coherence bandwidth

$$B_C \approx \frac{1}{50\sigma_{\tau}}$$

♦ 일반적인 경우 상관성이 0.5인 경우,

$$B_C \approx \frac{1}{5\sigma_{\tau}}$$

#### ◆ 다중경로에 대한 채널 특성

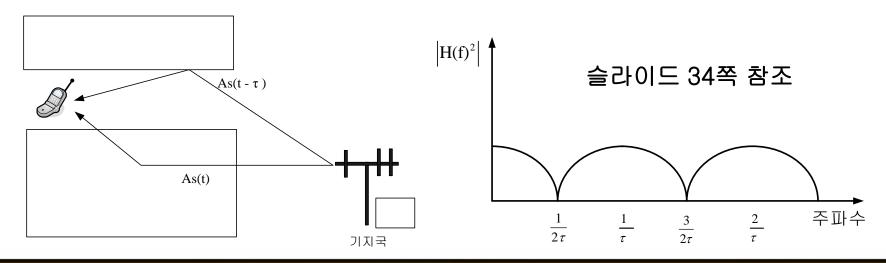
$$r(t) = A s(t) + A s(t - \tau)$$

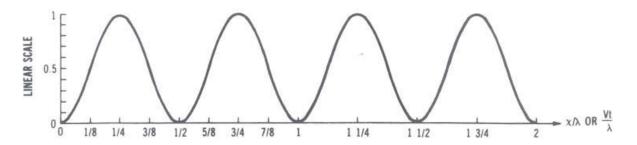
$$R(f) = A S(f) + A S(f) e^{-j2\pi f \tau}$$

$$R(f) = A S(f) [1 + e^{-j2\pi f \tau}] = A S(f) H(f)$$

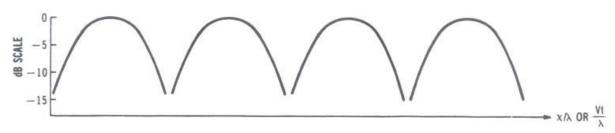
$$H(f) = 1 + e^{-j2\pi f \tau} = 2e^{-j2\pi f(\tau/2)} \cos(\pi f \tau)$$

$$|H(f)| = 2\cos(2\pi f(\tau/2))$$


\* Note:  


$$f = \frac{c}{\lambda} = \frac{1}{2\tau}$$
이고  

$$\tau = \frac{7 \text{ 리}(x)}{\stackrel{<}{+} \text{ 도}(c)}$$
이 므로  
대입하면,  


$$\frac{c}{\lambda} = \frac{1}{2(x/c)} \Rightarrow x = \frac{\lambda}{2} \text{ 섹 간격임.}$$

#### ◈ 다중경로 성분과 주파수 선택적 페이딩의 전달함수





(A) Power  $\alpha \sin^2(2\pi V/\tau T)$ .



(B) Power in dB scale (standing wave pattern).



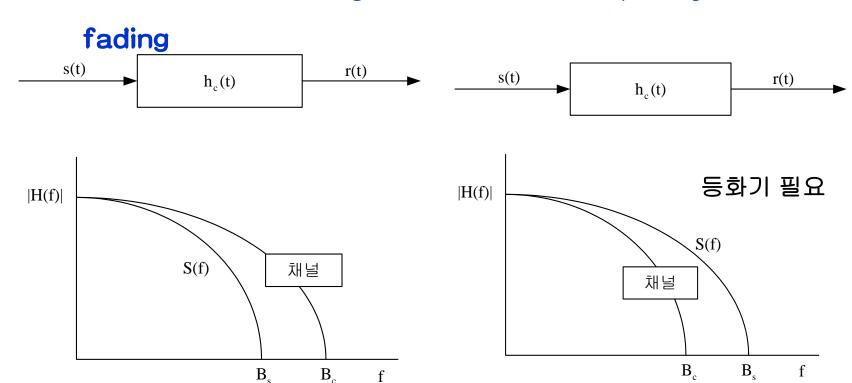
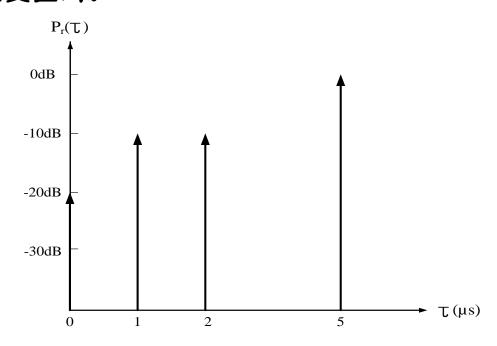

(C) Fading pattern with N reflected waves.

Figure E1.1. Fading illustrations with different scales.


#### ◈ 기저대역채널 응답(전달 함수)

#### Flat fading

#### Frequency Selective



에제) 아래에 주어진 다중경로 프로파일 대해서 평균 초과지연, rms지연, rms지연 확산, 최대초과(0 dB)을 계산하라. 또한 채널의 50%의 코히어런스 대역폭을 추정하라. 이 때 등화기가 없이도 AMPS(30KHz)나 GSM(200KHz) 시스템 채널에 알맞은가?



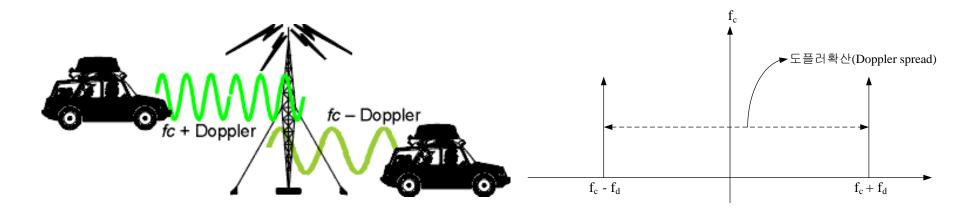
◈ 최대 초과 지연(maximum excess delay)

$$\bar{\tau} = \frac{(1)(5) + (0.1)(1) + (0.1)(2) + (0.01)(0)}{[0.01 + 0.1 + 0.1 + 1]} = 4.38\,\mu s$$

◈ 전력지연 프로파일 2차 모멘트

$$\bar{\tau}^2 = \frac{(1)(5)^2 + (0.1)(1)^2 + (0.1)(2)^2 + (0.01)(0)}{1.21} = 21.07 \,\mu\text{s}^2$$

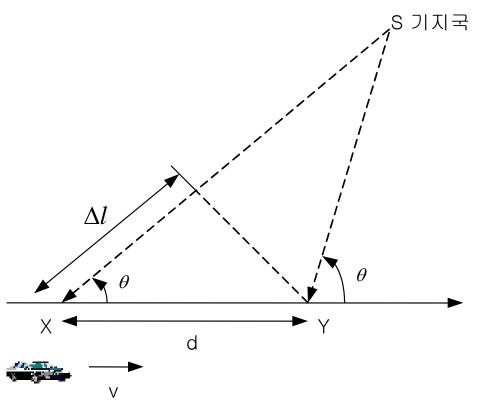
◈ rms 지연확산


$$\sigma_{\tau} = \sqrt{21.07 - (4.38)^2} = 1.37 \,\mu s$$

◈ 코히어런스 대역폭

$$\frac{1}{5\sigma_{\tau}} = \frac{1}{5(1.37\,\mu s)} = 146kHz$$

◆ 30kHz보다 크기 때문에 AMPS는 등화기 없이 동작할 수 있다. 그러나 GSM은 200kHz의 대역폭이 요구되므로 등화기가필요하다.


- □ 도플러 천이(*Doppler* shift): 이동체 속도에 따라 주파수가 변화하는 현상
- □ 도플러 확산(Doppler spread): 주파수 천이의 분포



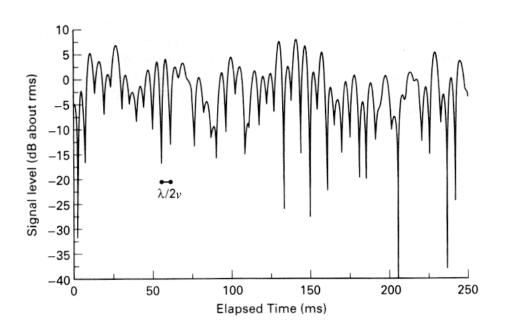
✓ 이동체가 움직이면서 경로 길이의 차이에 의한 수신 신호의 위상 변위가 생기며 이는 바로 주파수 변위를 야기시키게 된다. 이러한 주파수 변위를 도플러 천이 라고 한다.

#### □ 도플러 효과(Doppler Effect)

$$f_d = \frac{1}{2\pi} \cdot \frac{\Delta \phi}{\Delta t} = \frac{v}{\lambda} \cdot \cos \theta$$



Phase Shift:  $2\pi f_c \cdot \Delta t$ 


$$\Delta t = \frac{\Delta l}{c} \& \lambda = \frac{c}{f}$$

$$\Delta \phi = \frac{\omega \Delta l}{c} = \frac{2\pi \Delta l}{\lambda} = \frac{2\pi v \Delta t}{\lambda} \cos \theta$$

$$f_d = \frac{\Delta \phi}{2\pi \Delta t} = \frac{v}{\lambda} \cos \theta$$

파형 -> 슬라이드 36쪽 참조

#### □ 900MHz의 전형적인 레일라이 페이딩 포락선



#### \* *Note* :

최대도플러주파수 
$$f_d = \frac{v}{\lambda}$$
,  $t = \frac{1}{2f_d} = \frac{\lambda}{2v}$ ,  $\therefore vt = \frac{\lambda}{2}$ 



**Ex)**  $f_c = 1850MHz$   $v = 60mph \longrightarrow 26.82m/s$ 

$$\lambda = \frac{c}{f_c} = \frac{3 \times 10^8}{1850 \times 10^6} = 0.162m$$

◈ 송신기를 향하여 움직일 때 주파수 천이

$$f = f_c + f_d \quad (\rightarrow f_d = \frac{v}{\lambda})$$
$$= 1850 \times 10^6 + \frac{26.82}{0.162} = 1850.00016MHz$$

◈ 송신기로부터 멀어질 때 주파수 천이

$$f = f_c - f_d = 1849.999834MHz$$

◈ 이동국이 송신된 신호에 대해 수직으로 움직일 때

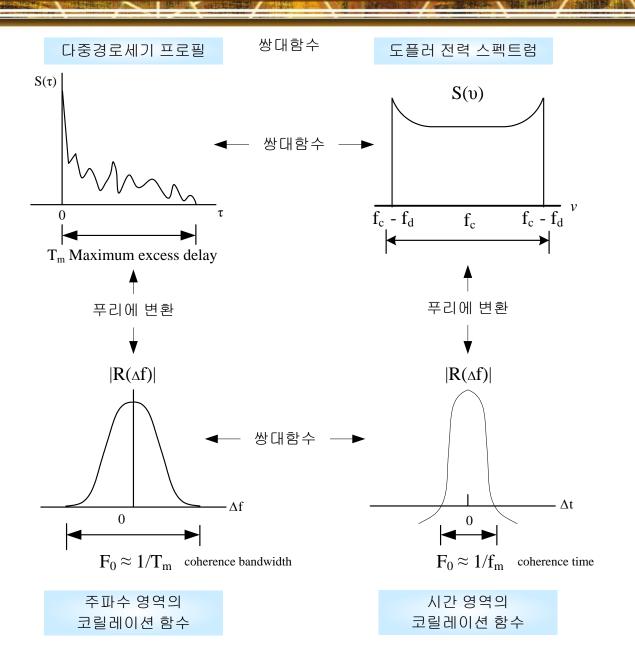
$$\theta = 90^{\circ} \cos \theta = 0$$

 $\theta = 90^{\circ} \cos \theta = 0$  :. No Doppler Shiht

#### ☐ Cellular: 90km/hr, 900MHz

$$\lambda_{cellular} = \frac{c}{f_{cellular}} = \frac{3 \times 10^8}{900 \times 10^6} = 0.33m$$
  $\Delta t_{cellular} = \frac{(\lambda_{cellular}/2)}{v} = \frac{0.167m}{25m/\text{sec}} = 6.67m \text{sec}$ 

$$f_{D,cellular} = \frac{v}{\lambda_{cellular}} = \frac{25m/\sec}{0.33m} = 75Hz$$


#### □ PCS : 25m/sec, 1.9GHz

$$\lambda_{PCS} = \frac{c}{f_{PCS}} = \frac{3 \times 10^8}{1.9 \times 10^9} = 0.16m$$
  $\Delta t$ 

$$\lambda_{PCS} = \frac{c}{f_{PCS}} = \frac{3 \times 10^8}{1.9 \times 10^9} = 0.16m \qquad \Delta t_{PCS} = \frac{(\lambda_{PCS}/2)}{v} = \frac{0.079m}{25m/\text{sec}} = 3.16m \text{sec}$$

$$f_{D,PCS} = \frac{v}{\lambda_{PCS}} = \frac{25m/\sec}{0.16m} = 158Hz$$

# 3.3.3 Small Scale Fading



# 3.3.3 Small Scale Fading

### ■ Small Scale Fading의 종류

소규모 페이딩(Small-scale fading)

(다중경로 지연확산으로 인한 페이딩)

# 주파수 비선택적 페이딩 (flat fading)

- 1. 신호 대역폭(BW of signal) < 채널 대역폭(BW of channel)
- 2. 지연확산(delay spread) < 심볼 주기(symbol period)

### 주파수 선택적 페이딩 (frequency selective fading)

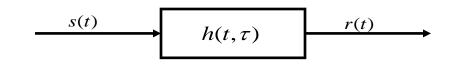
- 1. 신호 대역폭(BW of signal) > 채널 대역폭(BW of channel)
- 2. 지연확산(delay spread) > 심볼 주기(symbol period)

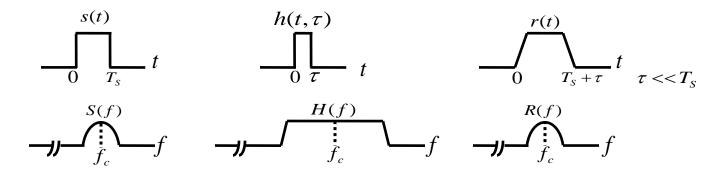
### 소규모 페이딩(Small-scale fading)

(도플러 확산으로 인한 페이딩)

### 빠른 페이딩(fast fading)

- 1. 도플러 확산의 증가(high Doppler spread)
- 2. 코히런스 시간(coherence time) < 심볼 주기(symbol period)
- 3. 도플러 확산으로 인한 주파수 분산이 클 경우


#### 느린 페이딩(slow fading)


- 1. 도플러 확산의 감소(low Doppler spread)
- 2. 코히런스 시간(coherence time) > 심볼 주기(symbol period)
- 3. 도플러 확산으로 인한 주파수 분산이 작은 경우

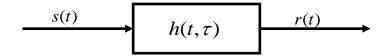
### 3.3.3.1 다중경로 시간 지연에 의한 Fading 효과

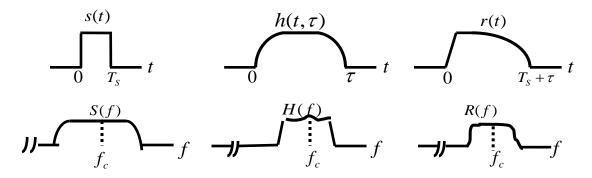
; 다중경로에 따른 수신 신호 시간 dispersion 은 전송신호에 flat fading, frequency selective fading을 야기시킴

i) Flat fading = Amplitude varying channels = Narrowband channels





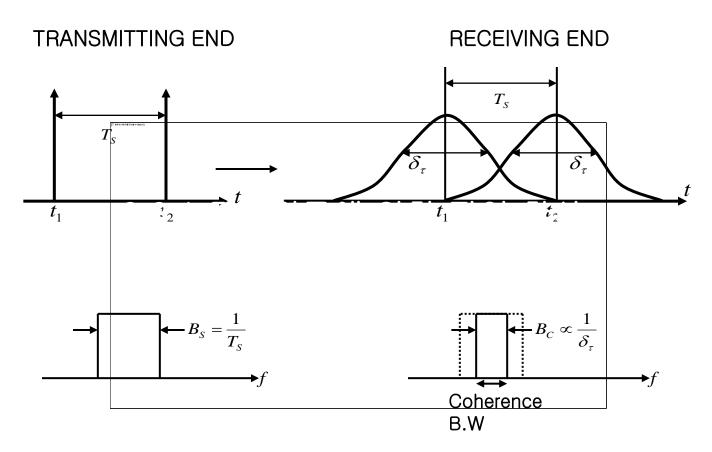

Flat fading channel characteristics


- 전송신호 B.W << Channel flat fading B.W (Coherent bandwidth) 또는  $T_{\rm S}>>\sigma_{ au}$  (rms delay spread)
- Deep fade 대책: 20dB~30dB 정도 전송전력을 증가시킴으로써
   bit error rate 를 줄일 수 있음.

### 3.3.3.1 다중경로 시간 지연에 의한 Fading 효과

### ii) Frequency selective fading

전송신호 대역폭(Bs) >> Coherence bandwidth(Bc)인 경우 전송 신호는 주파수 대역에 따라 다른 fading 특성을 가짐 ( $\equiv T_{\rm s} << \sigma_{\tau}$ )



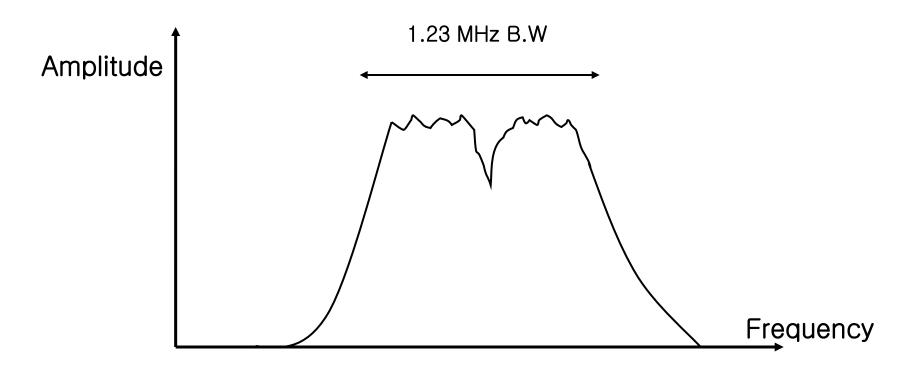



Frequency selective fading channel characteristics

### 3.3.3.1 다중경로 시간 지연에 의한 Fading 효과

Frequency selective fading(계속)




 $Time\ dispersive\ channels,\ \delta_{\tau}>>T_{S}$  인 경우

### Frequency Selective Fading

- □ Note 1: Frequency selective fading을 활용한 CDMA frequency diversity
  - 거의 대부분의 이동환경 하에서 다증경로 시간지연의 폭은 커지게 되고, 따라서 Coherence B.W는 작아짐. CDMA시스템에서는 아날로그시스템이나 TDMA 시스템보다 Coherence B.W에 비해 전송신호 대역폭이 훨씬 커지므로 전송대역폭의 일부분에서만 fading을 겪게 됨.⇒ 확산 대역폭이 커질수록 Fading 저항성 커짐.
- □ Note 2 : 다중경로에 의한 긴 delay spread시 Rake Receiver 를 활용한 fading 대책가능.

### CDMA Frequency Diversity

- Combats Fading, Caused by Multipath
- Fading Acts like Notch Filter to a Wide Spectrum Signal
- May Notch only Part of Signal



### 3.3.3.2 도플러 확산에 의한 페이딩

- 이동국의 상대적인 이동속도에 따라 전송신호의 Spectrum 천이(Doppler spread)가 야기됨. 이때 Doppler spreading 정도(대역폭)와 전송신호 대역폭과의 상대적인 크기에 따라 Fading 효과가 다름.
- 전송신호 변화율과 채널의 시간변화율과의 관계에 따라 (How rapidly the transmitted base band signal changes as compared to the rate of channel changes) Fast fading과 Slow fading channel로 구분됨.

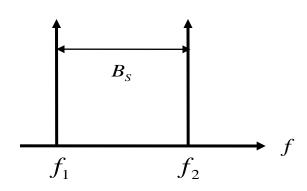
# 3.3.3.2 도플러 확산에 의한 페이

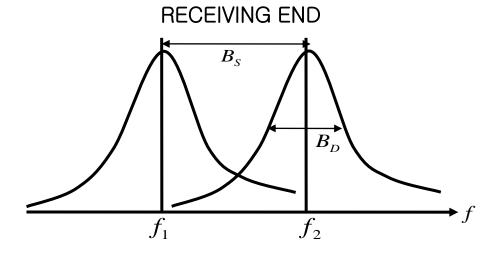
Doppler spread에 의한 Fading 종류

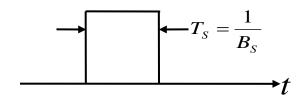
i) Slow fading

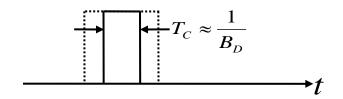
$$B_S >> B_D$$
 (DopplerSpread, B.W.)

$$T_S \ll T_C$$
 (Coherence Time  $\propto \frac{1}{B_D}$ )


ii) Fast fading

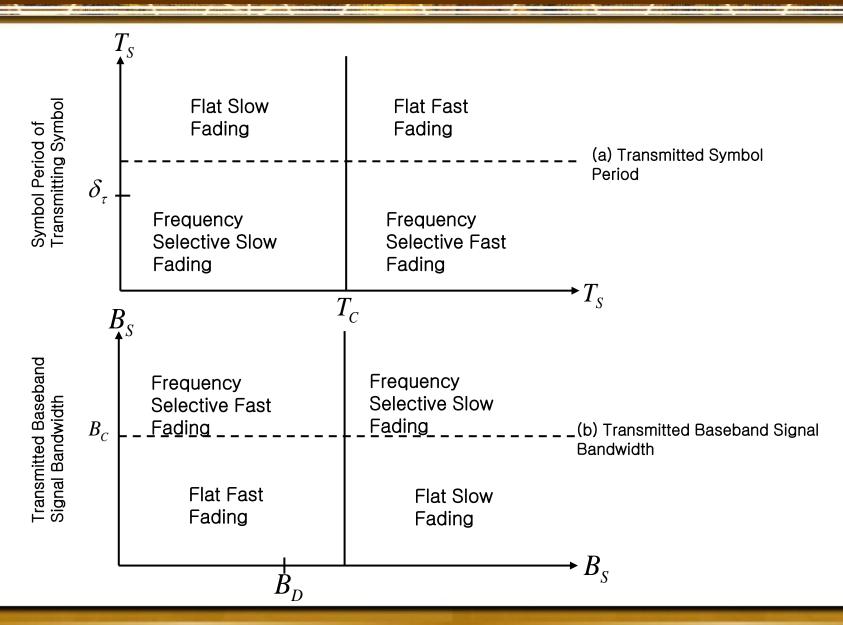

$$B_S << B_D$$
 ,  $T_S >> T_C$ 


\* Fast fading은 주로 Low-data rate 신호전송 시 발생


### Doppler spread에 의한 Fast fading 현상

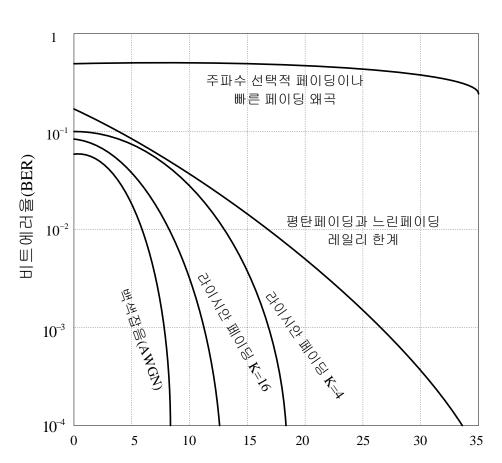












 $Frequency\ dispersive\ channels,\ B_D>> B_S\ 인 경우$ 

### 전송 Symbol Rate 에 따른 Small Scale Fading 분류



## 3.4 페이딩 채널 모델

- **라이시안** 계수  $K = \frac{\text{dominent path}}{\text{scattered paths}}$ 
  - K=0 : Rayleigh channel (dominant path=0)
  - ◈ K=무한대: AWGN channel (scattered paths=0)



